
FastReplace: Efficient Vt Replacement Technique
for Leakage Power Minimization

Abstract—This paper considers the timing-constrained discrete
Vt replacement problem (DVRP), for leakage minimization in
digital circuits. The problem is NP-complete. Earlier techniques
reported for the DVRP employed iterative greedy or sensitivity-
driven heuristics, that required incremental timing analysis after
every iteration. The key observation reported in this paper is a
good correlation between the slack distribution among gates in a
given iteration and the order of gate replacements in subsequent
iterations. This paper exploits the above observation to propose
FastReplace, an iterative algorithm that uses adaptive lazy timing
analysis to solve the DVRP. The proposed FastReplace technique,
when applied to ISCAS and ITC benchmark circuits, produced
solutions 9.8× and 3.1× faster as compared to the greedy
technique and a commercial multi-Vt synthesis tool respectively,
without impacting the solution quality.
Keywords: Vt replacement, leakage minimization, incre-
mental timing analysis, lazy timing analysis

I. INTRODUCTION

According to Dennard’s law [1], power density should remain
constant in spite of increase in MOS-device density with
technology scaling. Conventionally, supply voltage scaling was
used to reduce dynamic power consumption, and threshold
voltage scaling to maintain/improve the critical path timing. In
sub-100nm regime, the exponential increase in subthreshold
leakage with threshold voltage scaling caused leakage power
to dominate total power consumption in microprocessors [2].
Since leakage power is dissipated in idle mode, it does not
contribute to any useful computation. On the other hand,
excessive leakage power dissipation can cause wastage of
power resources and/or thermal runaway. There has been
extensive research during the last decade to reduce leakage
power at different levels of the VLSI design flow.

Gate-sizing and Vt-sizing are very efficient design-time
techniques to reduce leakage power under timing constraints.
Gate sizing is very effective in the early and middle stages
of the physical synthesis flow. But in the post-route stage,
applying gate sizing often necessitates incremental placement
which may increase the turn-around-time [3]. On the other
hand, Vt sizing will not impact the placement, while still
providing room for significant optimization in power/timing.
Thus, Vt sizing is employed to minimize leakage power at all
stages of the physical synthesis flow. Any standard cell library
shall have different versions of the same cell, one for each
threshold voltage. However, the number of versions for a given
cell is finite and limited to the discrete values of the threshold
voltage as made available by the foundry. While solving the Vt
sizing problem, the optimal value of Vt computed for each gate
in the given circuit may not belong to the threshold voltages

available in the given standard cell library, This necessitates
mapping of the computed Vt sizes in continuous domain to
the available (discrete) Vt values. Thus, the name Discrete Vt
Replacement Problem (DVRP). In this paper, we focus on the
timing-constrained DVRP for leakage power minimization in
digital circuits.

II. THE DISCRETE Vt REPLACEMENT PROBLEM

Consider a circuit formed using the gates {g1, g2, . . . , gNgate
}.

Let {xgi,j} denote a discrete variable defined as follows:

xgi,j =

 1, if gate gi in the given circuit is realized
with jth choice of Vt

0, otherwise
(1)

Let D(gi) denote the arrival time1 at the output of gate
gi, and, dgi,j and pgi,j denote the delay and leakage-power
respectively of gate gi when realized with jth choice of Vt.
Let m denote the total number of Vt choices made available in
the standard cell library. The optimization problem is to find
{xgi,j} for lowest leakage power, without violating the critical
path timing. Let fanin(gi) be the set of all gates driving the
gate gi; PO(C) and PI(C) denote the set of primary outputs
and primary inputs respectively of the given circuit C; and, T
denote the timing budget assigned to the given circuit C. It
can be formally stated as follows:

Minimize

Ngate∑
i=1

m∑
j=1

xgi,jpgi,j (2)

such that
m∑
j=1

xgi,j = 1,∀i, 1 ≤ i ≤ Ngate (3)

xgi,j ∈ {0, 1},∀i, 1 ≤ i ≤ Ngate;∀j, 1 ≤ j ≤ m (4)

D(gi) +

m∑
j=1

dgi,jxgi,j ≤ D(gk),∀gi ∈ fanin(gk) (5)

D(O) ≤ T, ∀O ∈ PO(C) (6)

D(I) ≥ 0,∀I ∈ PI(C) (7)

1maximum propagation time of any event in the primary inputs of the given
circuit to a given wire

In the above equations 6 and 7, D(O) and D(I) denote the
arrival-times at primary output wires and primary input wires
respectively. Equation 2 presents the objective function that
minimizes the leakage power of the given circuit. Equations 3
and 4 ensure that exactly one version of gate gi is used among
the available Vt choices. Equations 5, 6 and 7 ensure that the
arrival-time constraints are met for all the gates, primary inputs
and primary outputs of the circuit.

III. RELATED WORK

As mentioned earlier, a solution to the DVRP involves repeated
timing analysis of the given circuit. Thus, fast solution to the
DVRP requires a fast timing analyzer. Early Static Timing
Analysis (STA) engines always processed an entire design,
which is impractically expensive for evaluating every Vt
replacement [4]. It is to be noted that replacing Vt of a gate
gi, changes the arrival times of gates only in the fan-in and
fan-out cones of gi, while the arrival times of other gates
remain unaffected. By performing STA for entire design, we
may end up computing known values repeatedly. To improve
the efficiency of the STA engine, several incremental STA
techniques have been proposed in the past [5]–[10].

In [5], incremental STA is performed by solving the incre-
mental longest path problem, with a novel algorithm which is
linear in the number of edges in the dominance fan-out cone.
In [6], leftmost and rightmost frontiers of change in relative
timing values are recorded. Based on a request, incremental
timing analysis is performed on the modified design employing
the recorded frontiers of change to limit the timing analysis
to the affected regions of the circuit alone. An input based
path sensitization approach was used for incremental STA
in [7]. In [8], timing queries were modeled using temporal
logic and an efficient algorithm was proposed to answer
those queries. In [9], an efficient incremental STA algorithm
which exploits the circuit structure was proposed. In all these
works, path based algorithms were proposed to increase the
performance of incremental STA, but none of them except
[6] looked at reducing the number of times the incremental
STA needs to be performed. In addition, none of the above
mentioned techniques addressed timing-constrained leakage
power optimization. The timing-constrained leakage power
optimization problem was addressed in [3], [12], [13]. In [3],
a polynomial time approximation scheme was proposed, but
this scheme does not scale for large circuits, since the running
time grows quadratically with the size of the circuit. In [12]
and [13], iterative greedy heuristics were shown to be fastest
and most effective for solving the timing-constrained leakage
power optimization problem. However, it is stated in [12] that
even their proposed technique may take several hours when
applied to large circuits (> 100K gates). In this paper, we
show by experimentation that the greedy techniques indeed
take several hours, when applied to large circuits.

This paper uses the lazy evaluation paradigm to arrive at
a fast algorithm for the DVRP. Lazy evaluation is a popular
paradigm in improving the computational efficiency of itera-
tive algorithms. The line sweep algorithm used in the VLSI

routing checkers is based on this technique [11]. Incremental
STA for timing optimization based on lazy updates was first
proposed in [6]. Later, in [4], it was shown that lazy STA when
employed for timing optimization can result in more than 2×
speed-up, when combined with transactional timing analysis. It
should be noted that lazy updates may not be acceptable for
all optimization problems. An optimistic approach with lazy
timing updates, may lead to unnoticed timing violations that
might have occurred on the gates that have been marked dirty.
This demands backtracking that actually ends up increasing the
running time of the algorithm, defeating the whole purpose.
Interestingly, lazy updates do speed up the iterative algorithms
that solve the timing optimization problem.

This paper proposes the FastReplace algorithm for the
DVRP that uses the lazy update paradigm to reduce sig-
nificantly the number of STA runs during the optimization,
thereby speeding up the time required for solving the problem
without compromising on the quality of the solution.

IV. THE FASTREPLACE ALGORITHM

A. Motivation

The greedy techniques reported earlier in the literature are
iterative. In each iteration a gate with positive slack is assigned
a higher Vt version so as to reduce the leakage power, provided
the replacement does not violate the timing budget. At the end
of each iteration, incremental STA is performed and arrival
times/slacks are updated for all gates2. It is stated in [13] that
the greedy heuristic which replaces the gate with the largest
slack at every iteration, is the fastest. Hence, all comparisons
done in this paper are with respect to the greedy heuristic
mentioned in [13]. Let πi = {πi(1), πi(2), . . . } be the list
of gates in decreasing order of slack, in the ith iteration. For
c432 circuit, the first 5 iterations are summarized below. The
integers in the lists below denote the gates (Gate ID) and not
the slack time. The gates underlined are the ones which get
replaced in the respective iterations.

π1: 51 52 59 70 67 72 71 58 74 65 56. . .
π2: 51 52 59 70 67 72 71 58 74 65 56. . .
π3: 59 70 67 72 71 58 74 65 56 52 . . .
π4: 70 67 59 72 71 58 74 65 56 52 . . .
π5: 67 59 72 71 58 70 74 65 56 52 . . .

These lists provide the following insight into the working of
the greedy heuristic:
Observation 1: Gates higher in the ordering at the beginning
of an iteration, get replaced successively with a high proba-
bility in the next few iterations. For e.g. the gates 51, 59, 70
and 67 that were in the top 5 before iteration 1, got replaced
in successive iterations in the same order3. Therefore, instead
of replacing only one gate (the topmost in the list) during an

2Usually arrival times are associated with a net. In this paper, whenever
we mention about the arrival time of a gate, we intend to indicate about the
arrival time at the output of the gate

3It can be noted that Gate 51 is at the top of the list for both π1 and π2,
as it had large amount of slack even after replacement in iteration 1 and that
the standard cell library used has more than two Vt versions.

0 20 40 60 80 100 120 140 160
0.2

0.4

0.6

0.8

1

Iteration Number

C
o

rr
e

la
ti
o

n

r=5

r=20

(a) c432

Fig. 1. X axis: i, Y axis: ρ(i, i+ r), where
i: iteration number and r : number of gate replacements per each iteration

iteration, we can replace many gates that are among the top
of the list .
Observation 1 implies that the STA can be performed after
multiple gate replacements (Lazy timing evaluation) in contrast
to performing the same after every single gate replacement.
This in turn, significantly reduces the number of STA runs
and thereby, the running time of the entire algorithm. Since
incremental STA takes time, which is linear in circuit size,
in the worst case, it is understood that the computational
efficiency of the gate replacement algorithm can be improved
by reducing the number of the incremental STA runs.

To empirically justify our claim the following experiment
was conducted. The greedy heuristics in [13] was employed
on the c432 circuit for many iterations. For each iteration i,
sequence of gates denoted by π

′

i was computed such that π
′

i =
(gr1, gr2, gri−1, gi, gi+1....), where grj , 1 ≤ j < i, denote
the gate replaced in iteration j, and gk, k ≥ i are the gates in
decreasing slack values at iteration i. Then, π

′
= {π′

1;π
′

2; . . . }
is a matrix. It is straightforward to see that a good correlation
between the rows of π

′
justifies observation 1.

The autocor command in GNU Octave software is used to
find the correlations between the rows in π

′

i. The autocorrela-
tion function used in this experiment is shown in in Equation 8,
where i stands for the iteration number and r for number of
gate replacements.

ρ(i, i+ r) = corr(πi, πi+r) (8)

Figure 1 shows the autocorrelation plot of rows of π
′
.

The Y-axis shows the correlation and X-axis the iteration
number. Each waveform on this plot shows how the correlation
changes in successive iterations. Figure 1 shows that even for
r = 20, the correlation is very good, providing the opportunity
for performing lazy timing updates between gate replacement
iterations. If correlation is good for a certain value of r,
it indicates that we can replace r gates at a time, without
violating timing and without majorly disturbing the solution
quality. We call this variable r as gate replacement window.
Additionally Figure 1 shows how the correlation varies with

2 3 4 5 6 7 8 9 10
100

150

200

250

300

R
u

n
n

in
g

 T
im

e

Window Size (r)

Fig. 2. Saturation of Running time with Window Sizing for b14

iteration number. Thus, using a fixed gate replacement window
in all iterations, may lead to suboptimal results. It would be
desirable to change gate replacement window in successive
iterations, so as to adapt the algorithm to the iterative process,
effectively pruning the solution quality and the algorithm
running time.

B. Gate Replacement Windows

From the last section, we infer that in a given iteration i, if
ρ(i, i + r) is high for a certain r, r gates can be replaced in
iteration i itself, with little loss in solution quality compared
to greedy iterative gate replacement. There are two major
challenges in implementing this concept.

1) The ρ(i, i + r) function is not available beforehand for
all values of i. Computing the same takes prohibitively
large time and also results in solving the DVRP itself.

2) The window size r cannot be a constant, as we see
from Figure 1 that for a given r the correlation de-
creases for higher iteration numbers. The decrease in
correlation not only implies suboptimal results but also
that the replacement done may cause timing violations
in subsequent STA run forcing a backtrack (undo the
replacement). Large number of such backtracks shall
increase the execution time of the algorithm. Thus, the
window size r needs to be adaptive and change across
iterations.

Figure 2 shows the plot of running time versus varying r.
It can be seen here that the running time decreases with an
increase in r. After certain value of r (ropt), it saturates and
does not improve further. This is because

• with increase in r, there is a decreasing in the running
time of the algorithm.

• a very high value of r causes too many undo operations,
thereby saturating the running time of the algorithm.

The value of ropt was 8 for b14 circuit. This behavior was
observed for other circuits also, although the value of ropt was
different in each case. In general, the value of ropt increases
with the size of the circuit as shown in Figure 3.

The FastReplace algorithm addresses the challenges of
adaptively sizing r during optimization as follows: The value
of r is varied within a range [Wlow,Whigh]. At the start, r is

b14 b15 b17 b18 b19

10
1

10
2

10
3

Benchmark

r o
p
t

Fig. 3. ropt for different benchmarks

initialized to Wlow and incremented in each iteration until it
is equal to Whigh. After r reaches Whigh, it is maintained at
that value and is not increased further. At any stage, if there
is a timing violation, the previous window of replacements is
undone, and the value of r is reset to 1, so as to gracefully
recover from the impact of the violation.

C. The Proposed Algorithm

Algorithm 1 shows the proposed algorithm, wherein, the
window size is initialized to Wlow (line 1) to start with. All
gates are assigned to their LVt (lower Vt) versions that are
fast but consume large leakage power. An initial STA run is
done in line 3 to compute the slacks. Each execution of the
while loop in line 5 corresponds to an iteration. During each
iteration, the top window size number of gates in decreasing
order of their slacks are replaced as follows: if a gate is a LVt
cell then it is replaced by its SVt (Standard Vt) version, and if
it is a SVt cell then it is replaced by its HVt (High Vt) version
(lines 5 - 15). The STA run is performed in line 16. Based
on the results, the new window size value is computed as
described in previous section (lines 17 - 34).

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

The objective is to minimize leakage power of a given digital
circuit without degrading the performance. To achieve this, the
netlist is synthesized using 90 nm LVt library which is a high
performance library. We also set the timing constraint option
set max delay to 0.0 in the synthesis script, which will yield
a highly timing optimized LVt netlist. We perform mixed Vt
synthesis for leakage minimization (using a 90nm mixed Vt
library from the same vendor), by setting the leakage constraint
option set max leakage to 0.0 in the synthesis script. Addi-
tionally we set the timing constraint option set max delay to
the circuit delay obtained after the LVt synthesis. The resultant
netlist is thus timing constrained and power optimized.

The FastReplace tool (written in C + +) takes the synthe-
sized LVt netlist as input and represents the netlist as a graph,
using the Boost Graph Library 1.53.0. Each node in the graph
will have the following properties

• type (PI, PO, cell type),

Algorithm 1: Vt Replacement based on Adaptive Window
Sizing
Input: Nestlist C represented as a DAG, lower bound on

window size (Wlow), upper bound on window
size (Whigh)

Input: Set of Vts and corresponding delay, power values
window size = Wlow;1

n← gate count;2

Run STA after assigning LVt delays to all gates, and3

compute slack for each gate;
A ← list of gates, sorted in descending order of slacks;4

while A.size < window size do5

for i in 1 → window size do6

∆1 = Ai.SVt delay - Ai.LVt delay;7

∆2 = Ai.HVt delay - Ai.SVt delay;8

if (Ai is LVt) and (Ai.slack > ∆1) then9

Replace Ai with its SVt equivalent;10

end11

else if (Ai is SVt) and (Ai.slack > ∆2) then12

Replace Ai with its HVt equivalent;13

end14

end15

Check for delay violation by updating arrival times;16

if delay violation then17

if window size > 1 then18

undo replacements;19

window size ← 1;20

end21

if window size = 1 then22

undo replacement;23

mark Ai as critical;24

discard Ai;25

end26

end27

else28

update slacks by calculating required time ;29

update A;30

if window size < Whigh then31

window size ← window size + 1;32

end33

end34

end35

Result: Vt assignment to each gate

• fanins (array of all gate-ids that are fanins of that node),
• fanouts (array of all gate-ids that are fanouts of that

node),
• delay (average delay),
• leakage (average leakage),
• nature (LVt, HVt, SVt), output arrival time and slack.

The values of delay and leakage power are assigned to each
node, based on the nature parameter. For timing evaluation,
we use a full blown STA engine, because an incremental STA
engine is not feasible for multiple replacements with lazy

TABLE I
LEAKAGE POWER AND RUNNING TIME COMPARISONS

LVt Synthesis Mixed Vt Synthesis Mixed Vt Synthesis Mixed Vt Synthesis
using Commercial Tool using Greedy [13] using FastReplace with r=5

Circuit Leakage Leakage Runtime Leakage Runtime Leakage Runtime Speed-Up over Greedy [13] (S1)
c3540 82.11µW 18.60µW 62s 24.00µW 9.78s 21.46µW 2.50s 3.9×
c5315 82.52µW 9.15µW 57s 26.81µW 12.13s 24.87µW 3.27s 3.7×
c6288 214.42µW 121.42µW 121s 76.40µW 4m 20.19s 74.96µW 1m 9.94s 3.7×
c7552 136.04µW 14.40µW 68s 36.75µW 27.63s 34.52µW 7.26s 3.8×
b01 8.08µW 1.94µW 40s 3.64µW 0.021s 4.34µW 0.014s 1.5×
b02 5.43µW 1.75µW 41s 2.91µW 0.014s 2.10µW 0.011s 1.3×
b03 4.84µW 48.35nW 40s 2.40µW 0.075s 2.72µW 0.036s 2.1×
b04 50.92µW 9.36µW 47s 19.00µW 2.43s 14.57µW 0.755s 3.2×
b05 51.26µW 2.28µW 45s 9.30µW 4.20s 9.05µW 1.117s 3.8×
b06 11.63µW 1.19µW 40s 3.75µW 0.028s 3.75µW 0.016s 1.8×
b07 28.81µW 4.95µW 46s 8.49µW 1.553s 8.41µW 0.482s 3.2×
b08 26.94µW 3.94µW 36s 1.56µW 0.224s 1.57µW 0.076s 3.0×
b09 20.63µW 6.82µW 43 5.05µW 0.191s 5.70µW 0.068s 2.8×
b10 13.72µW 1.17µW 42 4.01µW 0.197s 3.99µW 0.071s 2.8×
b11 78.24µW 18.20µW 43s 9.20µW 3.70s 11.77µW 1.089s 3.4×
b12 96.90µW 27.21µW 46s 13.69µW 12.579s 14.68µW 3.484s 3.6×
b13 26.94µW 3.06µW 42s 4.84µW 0.76s 3.87µW 0.251s 3.0×
b14 426.87µW 173.75µW 144s 114.58µW 7m 33.16s 114.04µW 2m 2.35s 3.7×
b15 436.57µW 92.65µW 166s 86.13µW 14m 2.73s 85.07µW 3m 27.42s 4.1×
b17 1.04mW 265.87µW 384s 131.59µW 141m 37s 132.66µW 31m 58.38s 4.4×
b18 2.14mW 897.23µW 859s 442.40µW 23h 12m 23s 435.89µW 5h 13m 11.18s 4.5×
b19 4.12mW 1.80mW 1280s 687.23µW 126h 22m 43s 800.09µW 12h 10.5×
b20 703.20µW 109.73µW 209s 91.36µW 30m 14.92s 88.12µW 7m 9.69s 4.2×
b21 690.23µW 64.47µW 216s 120.46µW 29m 14.16s 107.92µW 7m 8.75s 4.1×
b22 1.02mW 302.57µW 328s 153.13µW 63m 20.0s 146.70µW 15m 7.55s 4.2×

Average - - - - - - - 3.5×

timing updates. All programs are single-threaded and were
run on an Intel core i7 64-bit machine, with a 16 GB RAM
and running at 3.4 GHz.

B. Results

Table I shows the results for the experiment conducted using
a fixed window size for FastReplace. The solution produced
by the FastReplace algorithm is compared with the solutions
provided by the greedy technique [13] and the mixed Vt
synthesis performed using the Synopsys Design Compiler
(Commercial) tool, from leakage power and running time
perspective. We see that for most of the benchmark circuits,
FastReplace provides a faster solution when compared to the
greedy technique, without degrading the solution quality. It
can be seen that the method is most effective for larger
circuits. The method may not always improve the leakage
power, as seen in the case of some smaller benchmark circuits.
This is because for smaller benchmark circuits, the room for
optimization is already less, which can further be degraded by
replacing multiple gates with lazy evaluation. However, this
phenomenon is not seen for larger benchmark circuits, due
to the higher scope for optimization available in those cases,
compared to the smaller benchmark circuits. The running
time however improves consistently across all the benchmark
circuits.

As mentioned in section IV-B, since the slack distribution
keeps varying across the iterations, it is desirable to adapt
the gate replacement window size across the iterations. Thus,
using a fixed window size across all the iterations, may not

TABLE III
RUNNING TIME COMPARISON WITH COMMERCIAL TOOL, UNDER

ISO-POWER CONDITION

Running Time for Tool FastReplace with
(Mixed Vt Synthesis) Adaptive Window Sizing

Ckt Running Time Speed-Up
b15 166s 71.0 2.3×
b17 384s 102.0 3.8×
b18 859s 374.0 2.3×
b19 1280s 810.0 1.6×
b20 209s 58.0 3.6×
b21 216s 117.0 1.9×
b22 328s 54.0 6.1×

Average - - 3.1×

always provide the best speed-up possible. To overcome this
limitation, we scale up/down the window size using timing
violation as a measure of confidence. Table II shows the
additional speed-up obtained by implementing this adaptive
sizing policy. It can be noted in Table I that for larger
benchmark circuits, the running time of FastReplace is slightly
higher when compared to the commercial tool. However, this
extra time is spent in reducing the leakage power. To allow
for a fair comparison of running time of FastReplace with the
commercial tool, we analyze the time taken by FastReplace to
provide the same leakage value. The results for the same are
presented in Table III. It can be seen here that FastReplace
performs faster than the commercial tool, under iso-power
condition.

TABLE II
TOTAL SPEED-UP OF FASTREPLACE WITH ADAPTIVE WINDOW SIZING, AS COMPARED TO ITERATIVE GREEDY REPLACEMENT

FastReplace FastReplace Additional Speed-Up Total Speed-Up
with r = 5 adaptive sizing due to adaptive sizing (S2) over Greedy (S1 × S2)

Ckt Leakage Runtime Leakage Runtime
c3540 21.46µW 2.496s 22.29µW 1.82s 1.4× 5.4×
c5315 24.87µW 3.274s 24.55µW 2.369s 1.4× 5.1×
c6288 74.96µW 1m 9.94s 75.88µW 46.503s 1.5× 5.6×
c7552 34.52µW 7.262s 34.91µW 5.652s 1.3× 4.9×
b01 4.34µW 0.014s 3.96µW 0.025s 0.6× 0.8×
b02 2.10µW 0.011s 2.11µW 0.011s 1.0× 1.3×
b03 2.72µW 0.036s 2.53µW 0.035s 1.0× 2.1×
b04 14.57µW 0.755s 16.05µW 0.604s 1.3× 4.0×
b05 9.05µW 1.117s 7.94µW 0.760s 1.5× 5.5×
b06 3.75µW 0.016s 4.02µW 0.025s 0.6× 1.1×
b07 8.41µW 0.482s 9.45µW 0.388s 1.2× 4.0×
b08 1.57µW 0.076s 1.53µW 0.062s 1.2× 3.6×
b09 5.70µW 0.068s 6.04µW 0.060s 1.1× 3.2×
b10 3.99µW 0.071s 3.63µW 0.062s 1.2× 3.2×
b11 11.77µW 1.089s 10.10µW 0.782s 1.4× 4.7×
b12 14.68µW 3.484s 12.81µW 2.627s 1.3× 4.7×
b13 3.87µW 0.251s 3.28µW 0.236s 1.1× 3.2×
b14 114.04µW 2m 2.35s 115.14µW 76s 1.6× 6.0×
b15 85.07µW 3m 27.42s 85.77µW 1m 56s 1.8× 7.3×
b17 132.66µW 31m 58.38s 133.36µW 4m 56s 6.5× 28.7×
b18 435.89µW 5h 13m 11.18s 437.87µW 40m 19s 7.8× 34.5×
b19 800.09µW 12h 740µW 2h 49m 26s 4.3× 44.8×
b20 88.12µW 7m 9.69s 83.02µW 1m 26s 5.0× 21.1×
b21 107.92µW 7m 8.75s 110.22µW 1m 58s 3.6× 14.9×
b22 146.70µW 15m 7.55 154.85µW 3m 34s 4.2× 17.8×

Average - - - - 2.0× 9.8×

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed FastReplace, an efficient Vt re-
placement algorithm for leakage power minimization, using
adaptive lazy timing analysis. The proposed algorithm pro-
vides 9.8× speed-up, without impacting the solution quality,
as compared to the iterative greedy replacement technique.
Additionally, under iso-power condition, we observe that the
proposed algorithm performs 3.1× faster than the commercial
tool. The following is the ongoing work, based on the results
we have obtained for FastReplace

• In our algorithm, the undo procedure is highly pes-
simistic. This limits the speed-up that is achievable even
with an adaptive window sizing mechanism. An interest-
ing future work, is to reduce the backtracking involved in
undoing an entire window, by efficiently identifying the
first violating gate within the window.

• Our algorithm does not address within-die process varia-
tion. Statistical Vt replacement using adaptive lazy timing
analysis is also under progress.

• There is scope for parallelization in FastReplace, by
simultaneously exploring mutually exclusive fanin and
fanout cones, for gate replacements and timing updates.
Existing works like [12] explored parallelization using
multithreading. We are exploring the scope for both paral-
lel and concurrent realizations of the proposed algorithm.

• We would like to extend FastReplace for improving
the runtimes of sensitivity driven metaheuristics, without
affecting the solution quality.

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous and A. R.
LeBlanc, “Design of ion-implanted MOSFET’s with very small physical
dimensions”, IEEE JSSC ,vol.9 ,no.5 ,1974, pp.256-268.

[2] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M.
J. Irwin, M. Kandemir and V. Narayanan, V, “Leakage current: Moore’s
law meets static power”, IEEE Computer , vol.36, no.12, 2003, pp.68-75.

[3] Y. Feng and S. Hu,“The epsilon-approximation to discrete VT assignment
for leakage power minimization”, International Conference on Computer
Aided Design, IEEE/ACM, 2009, pp.281-287.

[4] D. A. Papa, M. D. Moffitt, C. J. Alpert and I. L. Markov, “Speeding Up
Physical Synthesis with Transactional Timing Analysis”, IEEE Design
and Test of Computers, vol.27, no.5, 2010, pp.14-25.

[5] J. Lee and D.T. Tang, “An Algorithm for Incremental Timing Analysis”,
Design Automation Conference, IEEE/ACM, 1995, pp.696-701.

[6] R.P. Abato et al., “Incremental Timing Analysis”, US patent, 5,508,937,
to IBM Corp., Patent and Trademark Office, 1996.

[7] S.S. Sapatnekar, “Efficient Calculation of All-Pairs Input-to-Output De-
lays in Synchronous Sequential Circuits”, International Symposium on
Circuits and Systems, IEEE, 1996, pp.724-727.

[8] A. Mondal and C.A. Mandal, “A New Approach to Timing Analysis
Using Event Propagation and Temporal Logic”, Design, Automation and
Test in Europe ,IEEE, 2004, pp.1198-1203.

[9] D. Das et al., “FA-STAC: A Framework for Fast and Accurate Static
Timing Analysis with Coupling”, International Conference on Computer
Design, IEEE, 2006, pp.43-49.

[10] D. A. Papa et al., “Rumble: An Incremental, Timing-Driven, Physical-
Synthesis Optimization Algorithm”, International Symposium on Physical
Design, ACM, 2008, pp.2-9.

[11] T. H. Cormen, C. Stein, R. L. Rivest and C. E. Leiserson, “Introduction
to Algorithms”, 2nd Edition, 2001, McGraw-Hill Higher Education.

[12] J. Hu, A. B. Kahng, S. Kang, M.C. Kim and I. L. Markov, “Sensitivity-
guided metaheuristics for accurate discrete gate sizing”, International
Conference on Computer Aided Design, IEEE/ACM, 2012, pp.233-239.i

[13] S. Mok, J. Lee and P. Gupta, “Discrete sizing for leakage power
optimization in physical design: A comparative study”, ACM Transactions
on Design Automation of Electronic Systems, Vol. 18, No. 1, 15 (2012).

